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The Northeast Region of the National Park Service comprises national parks and related areas in
13 New England and Mid-Atlantic states.  Biological, physical, and social science research
results, natural resource inventory and monitoring data, scientific literature reviews,
bibliographies, and proceedings of technical workshops and conferences related to 38 of these
park units in Pennsylvania, New Jersey, Maryland, Virginia, and West Virginia are disseminated
through the NPS/NERCHAL Technical Report and Natural Resources Report series.  The reports
are a continuation of series with previous acronyms of NPS/PHSO and NPS/MAR, although they
retain a consecutive numbering system.  Individual parks may also disseminate information
through their own report series.  

The National Park Service (NPS) is responsible for preserving and protecting air quality and “air
quality related values” in the National Park System by ensuring compliance with the
requirements of the Clean Air Act, the National Park Service Organic Act, and other pertinent
laws, regulations, and policies.  This report focuses on the estimated historical, current, and
projected future conditions of air quality, acidic deposition, and known air quality related values
in Shenandoah National Park—visibility, streams, fish, aquatic insects, soils, and vegetation—
and the human-made air pollutants that most affect them.

This technical document was peer-reviewed by internal and external scientists.

Mention of trade names or commercial products does not constitute endorsement or
recommendation for use by the National Park Service or Shenandoah National Park.

A limited number of hard copies and compact disks are available from the Superintendent,
Shenandoah National Park, 3655 U.S. Highway 211 East, Luray VA 22835.

Hard copies may also be obtained (a copy charge may be involved) from the NPS Technical
Information Center (TIC), Denver Service Center, PO Box 25287, Denver CO 80225-0287.  To
order from TIC, refer to document D-271.

NPS D-271, May 2003
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EXECUTIVE SUMMARY

Introduction

Shenandoah National Park overlies the crest of the northern Blue Ridge Mountains of

Virginia. The park has one of the most comprehensive air quality monitoring and research

programs of all national parks and wilderness areas that are afforded special protection under the

Clean Air Act. Under the Clean Air Act (as amended), the Assistant Secretary for Fish, Wildlife

and Parks (acting through the park Superintendent) has an “affirmative responsibility” to protect

air quality related values from the adverse effects of human-made air pollution.

The park’s air-related science program has emphasized particulate matter, gaseous

pollutants, acidic deposition, visibility, and the acid-base status of streams. Over 20 years of

monitoring and research show that, despite some recent improvements, the park’s sensitive

scenic and aquatic resources remain degraded by human-made air pollution.  Furthermore, the

park’s air quality does not currently meet the 8-hour ground-level ozone standard set by the U.S.

Environmental Protection Agency to protect public health and welfare.  

In the late 1990s, park managers determined the need for a comprehensive, state-of-the-

science assessment of the park’s air quality and related values in support of air-related regional,

state, and park planning, policy-making, permit review, and scientific and outreach activities.

This report provides that assessment as well as key resource information.  The National Park

Service assembled a team of scientists to evaluate the estimated historic, current, and projected

future status of air quality and air pollution effects on sensitive resources in the park.  This

assessment addresses the park’s known air quality related values, including visibility, vegetation,

soils, streamwater chemistry, fish, and aquatic insects, as well as the human-made air pollutants

that most affect them.  This report also summarizes pertinent national and park-specific laws and

policies, and describes the park’s current and estimated historic air quality and resource

conditions.  It synthesizes knowledge on the visibility and ecological effects of atmospheric

pollutants, and documents park-specific critical load ranges for the effects of sulfur deposition

on surface waters and ground-level ozone on tree growth, forest growth, and species

composition.  It also projects future air quality, acidic deposition, and resource conditions and

recovery, assuming implementation of four emissions control scenarios. 

The atmospheric and deposition modeling described herein was conducted using the

Extended Regional Acid Deposition Model to: (1) determine principal emissions source
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subregions, known as airsheds, responsible for the majority of acidic deposition and sulfate haze

affecting the park; (2) apportion the relative contribution of the airshed emissions, as a function

of distance from the park, to the acidic deposition and sulfate air concentrations in the park; (3)

define the top-ranked source subregions within the airsheds responsible for the largest fraction of

acidic deposition and sulfate air concentrations affecting the park; (4) illustrate the relative

contributions of 13 eastern states to acidic deposition and sulfate haze in the park; and (5) project

future air quality and acidic deposition in response to the emissions control scenarios considered.

Park and regional monitoring data were used to characterize recent and current conditions and to

evaluate model performance.  Four emissions control scenarios were considered.  Scenarios 1

and 2 were based on emissions regulations required by the 1990 Clean Air Act Amendments and

projected to 2010 and 2020, respectively.  Scenario 3 was based on more stringent controls on

sulfur dioxide and nitrogen oxides emissions from electric utilities sources than were mandated

by the 1990 Clean Air Act Amendments.  Scenario 4 was based on the same emissions controls

on electric utilities sources as required by Scenario 3, plus more stringent controls on emissions

from industrial point sources and mobile sources than required by the 1990 Clean Air Act

Amendments.  

Dose-response calculations and simulation modeling were used to estimate potential future

changes in the extent of damage to visibility, aquatic, and forest resources in Shenandoah

National Park in response to Scenarios 1 through 4. The Model of Acidification of Groundwater

in Catchments was used to simulate aquatic ecosystem effects and determine ranges of critical

sulfur deposition loadings.  The TREGRO model was used to simulate the isolated effects of

ground-level ozone on tree growth. The ZELIG gap succession model was used to simulate the

isolated effects of ozone on forest stand composition and growth.  Future visibility conditions

were projected for each of the emissions control scenarios on the basis of expected reductions in

fine sulfate particle concentrations in the atmosphere and the known contribution of each particle

type to light extinction.  These analyses augmented a broader literature review pertinent to the

effects of human-made air pollutants on visibility and aquatic and terrestrial ecosystems.

Overall, this assessment found that implementation of emissions controls, especially

Scenarios 3 and 4, would be expected to make progress toward, but not fully restore, the park’s

estimated natural visibility conditions and acid-base chemistry of the most sensitive aquatic

ecosystems.  Full implementation of the 1990 Clean Air Act Amendments (Scenario 2) should

also make substantial progress toward protecting park forests from the isolated effects of ground-



Assessment of Air Quality and Related Values May, 2003
in Shenandoah National Park Page xxv

level ozone.  In addition, thirteen eastern states and several source subregions were identified

that can contribute the most toward restoring and protecting air quality and related values in

Shenandoah National Park.  The following is a summary of key assessment findings by major

topic.  

Detailed Summary of Assessment Findings

Emissions and Air Pollutant Transport

• Major emissions source subregions impacting the park are found in the Ohio River
Valley, northeastern West Virginia, southwestern Pennsylvania, and central and eastern
Virginia.

• In descending order of importance, Ohio, Virginia, West Virginia, Pennsylvania, and
Kentucky comprise the top five of thirteen key states causing sulfate air concentration
and haze impacts at the park.  West Virginia, Ohio, Virginia, Pennsylvania, and
Kentucky comprise the top five states causing sulfur deposition impacts at the park. 
Virginia, West Virginia, Ohio, Pennsylvania, and North Carolina comprise the top five
states causing oxidized nitrogen deposition impacts at the park.

• Emission sources within about 200 kilometers (125 miles) cause greater visibility and
acidic deposition impacts at the park, on a per ton basis, than more distant sources.  

• Because of the non-linear production of sulfur pollutants during transport, changes in
sulfur dioxide emissions do not translate into proportionate changes in sulfate air
concentrations or sulfur deposition.  These non-linearity effects are more pronounced for
haze than deposition, especially at higher sulfate air concentrations.  

• For five air pollutants (sulfur dioxide, nitrogen oxides, volatile organic compounds,
carbon monoxide, coarse particulate matter), in-park emissions comprise less than 1% of
total human-made emissions from the eight counties encompassing the park.

Ambient Air Quality and Acidic Deposition

The park has among the highest monitored concentrations of airborne sulfate particles,
acidic deposition, and ground-level ozone of all national parks.

Ground-level Ozone

• Many experts consider 25 parts per million-hour (ppm-hr SUM06) to be an important
ozone exposure threshold above which vegetation begins to show effects.  The mean and
maximum ozone exposures at Big Meadows were 47 ppm-hr and 87 ppm-hr,
respectively, during the period 1990-2000.
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• The park’s air quality from 1997 through 2001 did not meet the 8-hour ground-level
ozone standard set in 1997 by the U.S. Environmental Protection Agency to protect
public health and welfare.

Acidic Deposition

• Estimated total (wet + dry) annual deposition values at Big Meadows are currently about
13 kg/ha/yr for sulfur and 8 kg/ha/yr for nitrogen. 

• The park does not routinely monitor cloud and fog deposition, but limited in-park
research suggests its contribution toward the total deposition budget is relatively small
compared to higher elevation sites such as Whitetop Mountain, Virginia.

• Concentrations of sulfur in wet deposition have shown a decreasing trend over the past
15 to 20 years at Big Meadows, North Fork Dry Run and White Oak Run.

• Concentrations of nitrogen in wet deposition have shown evidence of some decline over
the past 15 to 20 years at North Fork Dry Run and White Oak Run, but not at Big
Meadows.

Visibility Status and Trends

Visibility has been degraded in the park, potentially detracting from visitor enjoyment of
numerous vistas accessible from Skyline Drive (a Virginia State Scenic Highway), the
Appalachian National Scenic Trail, and other trails and points in the park.  

• Current annual average visual range is about 20% of the park’s estimated natural visual
range of approximately 185 kilometers (115 miles).

• Current annual average haziness is about three times greater than the park’s estimated
natural haziness of about 7.5 deciviews.

• Seasonal variability in visibility is driven primarily by changes in the atmospheric
concentration of ammonium sulfate, and poorest visibility occurs in summer.

• Even the park’s clearest 20% of days, which occur mainly in winter, are degraded by
human-made particulate matter.  The fine mass budget on these clearest days includes
about 51% sulfates and 12% nitrates.

• Although the clearest 20% of days showed no consistent trend for March 1988 through
February 2000, the haziest 20% showed a moderately improving trend.  
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Terrestrial Ecosystem Status and Trends

Ground-level Ozone

Ground-level ozone is considered to be a long-term, potentially debilitating stress to the
park’s ozone-sensitive vegetation that can interact with other, potentially exacerbating
stresses such as drought, insects, and diseases.  This assessment focuses on the isolated
effects of ozone on trees and forests.  Ground-level ozone also causes visible foliar damage
to several plant species in the park, including but not limited to milkweed, black cherry,
yellow poplar, and white ash.  However, little is known about the relationship between
visible foliar injury and the growth or vitality of sensitive plant species. 

• Responses of eight tree species to the isolated effects of ground-level ozone exposures
were simulated, and ranked in order from most to least sensitive to growth and species
composition impacts: 

White ash>Basswood=Chestnut oak>Red maple>Yellow poplar>Black
cherry=Red oak>Sugar maple.  

• Simulations suggested that white ash is more sensitive to growth and species composition
impacts than other species, both as an individual and as a component of a forest stand. 
Ambient ground-level ozone exposure caused an estimated 1% decrease in total growth
of white ash, a long-lived species, over the three year simulation period. 

Acidic Deposition

Sulfur retention in watershed soils reduces the potential for the acidification of surface
waters because it decreases the mobility of sulfate.  However, as the finite adsorption
capacity of soils is exhausted, sulfate concentration can increase in soil waters and surface
waters, potentially contributing to greater acidification.  Based on published out-of-park
research, it is unlikely that deciduous forest vegetation in the park has experienced
sufficiently high deposition of sulfur or nitrogen to cause adverse acidification impacts,
although high elevation and isolated coniferous forest areas may be more sensitive. 

• The park’s recently observed total (wet + dry) nitrogen deposition rates of close to 8
kilograms/hectare/year (kg/ha/yr) are approaching the 10 kg/ha/yr levels observed
elsewhere to often be associated with nitrate leaching (an indicator of nitrogen
saturation).

• Data from the 2000 soil survey of 14 park watersheds indicated that median base
saturation (a reflection of soil acid-base status) was less than 10% for mineral soils
associated with siliciclastic bedrock and less than about 14% for mineral soils associated
with granitic bedrock in the park.  This measure of watershed soil acid-base status is
related to the stream’s acid neutralizing capacity (ANC).  All park watersheds that were
characterized by soil base saturation less than about 14% had average streamwater ANC
less than 100 microequivalents per liter (µeq/L).  Watersheds that had higher soil base
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saturation were dominated by the basaltic bedrock type and had average streamwater
ANC greater than 100 µeq/L.  

Aquatic Ecosystem Status and Trends

The acid-base status of the park’s streamwater chemistry is closely related to the
characteristics of bedrock geology and soils.  The park has three major geologic types
underlain by siliciclastic (quartzite and sandstone), granitic, and basaltic bedrock.  Each of
these bedrock types underlies about one-third of the park area.  Siliciclastic sites have the
greatest sensitivity to acidification, while granitic sites have moderate sensitivity and
basaltic sites have low sensitivity. Sulfur is the primary determinant of precipitation acidity
and sulfate is the dominant acid anion associated with acidic streams, both in the central
Appalachian Mountains region and within the park.  Sulfur deposition has acidified park
streams and affected in-stream biota, particularly in watersheds dominated by siliciclastic
bedrock types that give rise to soils with low base saturation and relatively low sulfur
adsorption, and to streams with low ANC.  In the absence of severe disturbance such as
forest defoliation by the gypsy moth, nitrogen is generally tightly cycled within park
watersheds and does not contribute significantly toward streamwater acidification.

• Of the 14 park streams modeled for this assessment, none had simulated pre-industrial
streamwater ANC less than 50 µeq/L, suggesting that these streams may have supported
a greater variety of aquatic fauna. 

• Almost half of the siliciclastic streams in a 1992 in-park survey of small subwatersheds
were chronically acidic (ANC < 0 µeq/L) in which lethal effects on brook trout are
probable.  The balance of siliciclastic streams had ANC in the episodically acidic range
(having chronic ANC between 0 and 20 µeq/L) in which sub-lethal or lethal effects are
possible.  Many of the streams associated with granitic bedrock in this survey were in the
indeterminate ANC range (20-50 µeq/L) for brook trout.  In contrast, the streams
associated with basaltic bedrock had relatively high ANC values that were well within
the suitable range for brook trout.  These thresholds were developed for brook trout,
which is considered the most acid tolerant fish species in the park.  Species which are
more acid-sensitive, such as blacknose dace and some mayfly species, likely have higher
suitable ANC ranges than brook trout.  Generally, ANC values greater than 20 to 50
µeq/L should support greater diversity and larger populations of aquatic fauna. 

• Episodic acidification of park streams can be attributed to acidic deposition and natural
processes, and it is superimposed on baseflow chemistry that is more acidic than pre-
industrial conditions.  Episodic ANC values are generally about 20% lower than
baseflow values.

• Acidic episodes in low ANC park streams killed young brook trout and adult blacknose
dace in field bioassays.
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• Modeling results suggested that park streams that occur on siliciclastic bedrock have
generally lost one or two species, and some streams may have lost up to four species, of
fish in response to acidic deposition.

• Low ANC park streams generally have lower fish species richness, lower population
density, poorer blacknose dace condition, fewer age classes, smaller sizes, and lower
field bioassay survival than higher ANC streams.

• Higher ANC streams generally have greater numbers of families and numbers of
individuals in each of three important benthic insect orders:  mayflies (Ephemeroptera),
stoneflies (Plecoptera), and caddisflies (Trichoptera) than low-ANC streams.

• Park streamwater chemistry is showing signs of ANC recovery in response to decreased
sulfur deposition, whereas streamwater chemistry within the larger western Virginia
region is not.  Recent changes in both streamwater sulfate concentrations and ANC are
generally smaller than in the northeastern United States, are confounded by seasonal
differences, and in many cases are not statistically significant.

• Most park streams do not show evidence of ANC recovery in the winter season when the
brook trout is present in its early, more acid-sensitive life stages.

Future Conditions and Prognosis for Recovery

Visibility

• Future improvements in annual average visibility projected to result from the emissions
control scenarios ranged from 13% to 38% for Scenarios 2 through 4.

• For the summer season, the degree of needed visibility improvement to restore estimated
natural background conditions at the park is nearly 85%.  Implementation of the most
stringent emissions control scenario (4) was forecasted to achieve a 52.4% improvement
in average summer-time visibility at the park.

Terrestrial Ecosystems

• 1997 through 1999 ambient ground-level ozone exposures were projected to cause a 50%
decrease in white ash species composition in chestnut oak forests projected over the 100-
year simulation period.

• Ground-level ozone exposures greater than ambient levels were projected to cause less
than 10% decrease in white ash and yellow poplar species composition in cove hardwood
forests over 100 years.

• Ground-level ozone exposure scenarios were projected to cause 0 to 3% decrease in
growth or species in yellow poplar forests composition over 100 years.
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• Model results suggested that the isolated effects of ground-level ozone on growth and
composition of park forests should diminish under Scenarios 2 through 4.

• Foliar injury on sensitive vegetation that occurs at lower ground-level ozone exposures
(i.e., 10-15 ppm-hr SUM06) should diminish as a forest stress factor under Scenarios 2
through 4.  Foliar injury is projected to be rare under Scenario 4, which assumes more
than 50% reduction in ozone exposure.

• Modeling results suggested that ground-level ozone exposures about 15% less than 1997
through 1999 ambient levels should protect against isolated changes in white ash growth
and species composition in the park’s forests. 

Aquatic Ecosystems

Model projections of future streamwater ANC in streams on siliciclastic bedrock ranged
from simulated changes less than 10 to greater than 40 µeq/L for scenarios 1 through 4.

• In response to substantial reductions in sulfur deposition (Scenario 4), model projections
for the year 2100 suggested that park streams on siliciclastic bedrock would likely
experience increases of one to two species of fish, improved suitability for brook trout,
and improved condition of blacknose dace.  However, none of these streams are
projected to fully recover the estimated number of fish species lost in the past in response
to acidic deposition.  

• Levels of continuous future sulfur deposition that were simulated to cause streamwater
ANC to change to three specified critical levels (0, 20 and 50 µeq/l) ranged from less
than zero (not attainable) to several hundred kg/ha/yr, depending on the site, ANC
endpoint, and evaluation year.  The specified critical levels correspond to general aquatic
fauna response categories.  

• Modeled streams on siliciclastic bedrock showed critical sulfur deposition loads ranging
from 9 to 15 kg/ha/yr in order to protect against chronic acidity (ANC less than 0) in the
year 2100. Lethal effects on brook trout are probable at ANC less than 0.

• Modeled streams on siliciclastic bedrock showed critical sulfur deposition loads ranging
from 6 to 11 kg/ha/yr in order to protect against acidification to ANC of 20 µeq/L in the
year 2100.  Sub-lethal or lethal episodic effects on brook trout are possible at ANC 0 to
20 µeq/L. 

• Modeled streams on siliciclastic bedrock showed critical sulfur deposition loads ranging
from less than 0 (not attainable in one modeled stream) to 6 kg/ha/yr to protect against
acidification to ANC of 50 in the year 2100.  Streams having ANC above 50 µeq/L
generally support greater diversity and populations of aquatic fauna than do lower ANC
streams.  



Assessment of Air Quality and Related Values May, 2003
in Shenandoah National Park Page xxxi

Conclusions

This assessment reveals that the park’s visibility and most sensitive aquatic ecosystems

have been degraded by human-made air pollution, although there is some evidence of recent

improvement, presumably as a result of Clean Air Act implementation.  Full recovery of the

park’s estimated natural visibility conditions and acid-base chemistry of the most sensitive

streams would not occur under any of the four emissions control scenarios, although varying

degrees of progress would be made.  Implementation of the 1990 Clean Air Act Amendments

(Scenario 2) should make substantial progress toward or possibly achieve protecting park forests

from the isolated effects of ground-level ozone on tree growth, forest growth, and changes in

forest species composition.  However, model simulations of isolated effects may underestimate

ground-level ozone forest effects, since ozone does not act alone.  The park’s air quality and

related values are primarily influenced by emission sources in Great Lakes States, Mid-Atlantic

States, Southeastern States, and several key source subregions that transcend state boundaries. 

These states and subregions can contribute the most through collaborative, intra- and inter-

regional efforts toward restoring and protecting clean air, clear views, and healthy aquatic and

terrestrial ecosystems in Shenandoah National Park.




